### Estimating the Benefits of Stream Water Quality Improvements in Urbanizing Watersheds



Roger H. von Haefen, NC State April 2021



We thank the US Environmental Protection Agency for financial support (EPA STAR #83616501).

## **Research Team**

- NC State:
  - Roger von Haefen, ARE
  - Dan Obenhour, CCEE
  - Jonathan Miller, CCEE
  - Christy Perrin, WRRI
- RTI International:
  - George Van Houtven
- UMD & UMN:  $\bullet$ 
  - Melissa Kenney
  - Michael Gerst
- James Madison  $\bullet$ 
  - Sasha Naumenko











NC STATE UNIVERSITY

## **Research Area**



### **North Carolina**

NC STATE UNIVERSITY

## **Research Focus**



### **Urban Stream Syndrome**

### Causes

• Sediment erosion & surface runoff





N.C.M.C.M.C.M.C.M.













# **Attributes**

### Harm to stream ecosystem conditions:



### More bacteria in streams => human health risks



More murky water days

## **Ecosystem Condition**

NC STATE



Eottom dwellers: Many different types of underwater bugs like mayflies, stoneflies, and crayfish.



Eish: Fewer but hardier species like crappie, carp and sunfish present. Some have shorter lifespans.

Bottom dwellers: Fewer types of bugs present; hardier types like dragonflies, beetles and crayfish present.



Fish: Only a few very hardy species like sunfish present, which tend to be relatively small and young.

Bottom dwellers: Aquatic worms, leeches and snails dominate.

## **Human Health Risk**



#### **Categories of Increased Health Risk**



Because children are more likely than adults to wade in streams, our categories are based on risks to children (less than 15 years old) of getting stomach illness from streams.

We describe these risks by comparing them with risks to children who do <u>not</u> wade in streams.

In a typical month, about **6 percent** of children who do <u>not</u> wade in streams get stomach illnesses that keep them home from school. They get these illnesses in many ways, especially from contact with other kids. This **"background"** risk of illness is represented by the six boxed kids in the graph of 100 children below.

| ŧ        | ŧ  | ŧ  |    | 1  | ŧ | <b>†</b> | ŧ | Ť        | ŧ  |
|----------|----|----|----|----|---|----------|---|----------|----|
| Ť        | *  | ŧ. | *  | Ť  | * | Ť        | * | Ť        | ŧ  |
| <b>†</b> | *  | Ť. | *  | Ť  | * | Ť        |   | <b>†</b> | ÷. |
| <b>†</b> | ÷. | Ť  | ÷. | Ť  | * | <b>†</b> | * | Ť        | ŧ  |
| Ť        | ŧ  | Ť  | ŧ  | Ť  | * | Ť        |   | Ť        | ŧ  |
| <b>†</b> | ÷. | Ť  | ÷. | Ť  | * | Ť        | * | ŧ.       | ŧ  |
| Ť        | ŧ  | Ť  | ÷. | Ť  |   | Ť        |   | Ť        | ŧ  |
| Ť        | ŧ  | Ť  | ŧ. | Ť  |   | Ť        |   | Ť        | *  |
| Ť        | ŧ  | Ť  | ÷. | Ť  |   | Ť        |   | Ť        | *  |
| Ť        | *  | Ť. | ÷. | Ť. | * | Ť.       | * | Ť.       | ŧ  |

#### 1. LOW health risk



Because bacteria levels are low, wading in this type of stream increases a child's risk of a stomach lilness from the background risk (6 percent) to on average **7 percent**.

#### 2. MEDIUM health risk

Wading in this type of stream increases a child's risk of a stomach illness from background risk (6 percent) to on average **9 percent**.

So to categorize each stream based on health risks, we ask the following question:

\_\_\_\_\_

#### 3. HIGH health risk

| t    | ŧ    | ŧ       | ŧ    | 1      | ŧ    | ÷.   |      | †    |        |
|------|------|---------|------|--------|------|------|------|------|--------|
| ÷    | 1    | Ť       | *    | Ť      | *    | Ť    | *    | Ť    | *      |
| Ť    | *    | Ť       | *    | Ť      | ŧ    | Ť.   | ŧ    | ÷.   | *      |
| Ť    | ŧ    | Ť       | *    | Ť.     | ÷.   | Ť    | ÷.   | Ť.   | ÷.     |
| Ť.   | ŧ.   | Ť.      | *    | Ť.     | ÷.   | Ť.   |      | Ť.   | ÷.     |
| Ť    | ŧ    | Ť.      | ŧ.   | Ť      | ŧ    | Ť    | ŧ    | ţ.   | ŧ.     |
| Ţ.   | Ŧ    | Ţ.      | Ŧ    | Ţ.     | Ŧ    | Ţ.   | Ŧ    | Ţ.   | Ŧ.     |
| Ţ    | Ŧ    | Ţ       | Ŧ    | Ţ      | Ŧ    | Ţ    | Ŧ    | Ţ    | Ŧ      |
| Ţ    | Ŧ    | Ţ       | Ŧ    | Ţ      | Ŧ    | Ţ    | Ŧ    | Ţ    | Ŧ      |
| - 11 | - 22 | - 111 - | - 22 | - 111- | - 22 | - 11 | - 22 | - 11 | - 22 - |

Wading in this type of stream increases a child's risk of a stomach illness from background risk (6 percent) to on average **12 percent**. So, the higher bacteria levels would on average double the child's risk of a stomach illness.

# **Murky Water Days**



feet. With clear water, you can.

### **NC Piedmont/ Upper Neuse River Basin**



# Water quality modeling

1) Identify stressors for important water quality indicators:

- BI- Biotic index
- **TDU** turbidity
- TN- total nitrogen

- FC- fecal coliform
- SC- specific conductance
- **TP** total phosphorus
- 2) Assess potential water quality improvements
  - Forecast indicators throughout the Upper Neuse River Basin
  - Compare potential management scenarios

## **Scenarios**

|   | Management Scenario                           | Candidate predictor variables<br>affected |
|---|-----------------------------------------------|-------------------------------------------|
| 1 | Increase canopy cover in stream buffers (50%) | Canopy Loss (buffer)                      |
|   |                                               | IC (basin, buffer)                        |
| 2 | Decrease effect of IC (25%)                   | IC (recent)                               |
|   |                                               | IC (age)                                  |
| 3 | Decrease effect of WWTP (25%)                 | WWTP (loadings; #; spatial proximity)     |
|   |                                               | Canopy Loss (buffer)                      |
|   |                                               | IC (basin, buffer)                        |
| 4 | Combination of scenarios #1-3                 | IC (recent)                               |
|   |                                               | IC (age)                                  |
|   |                                               | WWTP (loadings; #; spatial proximity)     |
| 5 | Mitigate positive site and basin random       | Site random effects                       |
| 5 | effects (25%)                                 | Basin random effects                      |

IC – Impervious Cover; WWTP = Wastewater Treatment Plant

# **Projections**



## **Expert Elicitation**

**Ecological Measurement Data:** 

| Biotic<br>Index | Fecal<br>Coliform<br>(cfu/100mL) | Specific<br>Conductance<br>(uS/cm) | Total<br>Nitrogen<br>(mg/L) | Total<br>Phosphorus<br>(mg/L) | Turbidity<br>(NTU) |
|-----------------|----------------------------------|------------------------------------|-----------------------------|-------------------------------|--------------------|
| 7.86            | 150.7                            | 80.5                               | 0.43                        | 0.035                         | 6.97               |

Stream Ecosystem Condition:

What is the *most likely* condition of the wadeable urban stream for this endpoint?



How many of the 100 streams will fall into each category of ecosystem condition?



## **Expert Elicitation**

| Biotic<br>Index | Fecal<br>Coliform<br>(cfu/100mL) | Specific<br>Conductance<br>(uS/cm) | Total<br>Nitrogen<br>(mg/L) | Total<br>Phosphorus<br>(mg/L) | Turbidity<br>(NTU) |
|-----------------|----------------------------------|------------------------------------|-----------------------------|-------------------------------|--------------------|
| 7.86            | 150.7                            | 80.5                               | 0.43                        | 0.035                         | 6.97               |

#### Murky Water Days:

What is the most likely condition of the wadeable urban stream for this endpoint?



How many of the 100 streams will fall into each category of murky water frequency?



# **Expert Elicitation**

### Human health risk (in-process)

- We have data for fecal coliform; EPA standards are for E-Coli
- Standards are for adults, risks are for kids
- Regional heterogeneity

\*\* Thanks to Dr. Marirosa Molina at EPA

### **Survey Instrument**

• Targets Wake, Mecklenburg and Guilford counties







## **SP Tasks Completed To Date**

- Initial stakeholder meeting
- 13 focus groups
- 8 cognitive interviews
- A complete survey instrument
- 2 Qualtrics panel pretests (N = 730, 420)
- Nearly complete primary data collection (Current N = 2,432)

# **Survey Instrument**

- Programmed in Qualtrics with extensive pictures, graphics
- 4 Choice experiments (CEs)
- Experimental design includes 10 blocks (Ngene)
- Attributes presented in one of two randomly assigned orders

# **Choice Experiments**

 Center around action plans that improve water quality in about 25% of stream miles (~100 miles) in each county



🗖 Wake County 🔲 Lakes and Large Rivers 🔄 Urban/Suburban Boundaries — Stream ---- Interstate ----- Freeway — Other Main Road 🛛 🛧 Airport

### **Choice Experiments**



- 3 water quality attributes, monthly costs
- Each quality attribute has 3 levels

## **Choice Experiments**

**Improvements in Ecosystem Condition** 



• The percent of stream miles in **POOR** ecosystem condition would

decrease from **25%** to **23%**.



- The percent of stream miles in GOOD ecosystem condition would increase from 48% to 50%.
- The percent of stream miles in MEDIUM ecosystem condition would remain at 27%.



| Max    | Min   | Std. Dev. | Mean     | Obs   | Variable    |
|--------|-------|-----------|----------|-------|-------------|
| 1      | 0     | .4888198  | .4762804 | 2,432 | gender      |
| 90     | 18    | 16.32558  | 51.17411 | 2,432 | age         |
| 225000 | 10000 | 61764.52  | 99263.24 | 2,432 | income      |
| 1      | 0     | .4857636  | .5644962 | 2,432 | fulltime    |
| 1      | 0     | .4184308  | .2401087 | 2,432 | retired     |
| 1      | 0     | . 4226606 | .7526407 | 2,432 | own_home    |
| 1      | 0     | .0967971  | .9901364 | 2,432 | hs diploma  |
| 1      | 0     | .4381062  | .7237736 | 2,432 | <br>college |
| 10     | 1     | .8903239  | 1.99871  | 2,432 | adults      |
| 10     | 0     | 1.004239  | .5871862 | 2,432 | kids        |
| 1      | 0     | .2111856  | .0491673 | 2,432 | asian       |
| 1      | 0     | . 3553272 | .1569705 | 2,432 | black       |
| 1      | 0     | .4264147  | .7439864 | 2,432 | white       |
|        |       |           |          |       |             |

# **Raw Data**

(all four choice experiments)

| Cost |   |    |     | Obs   | % Yes |
|------|---|----|-----|-------|-------|
|      |   |    | •+  |       |       |
| cost | = | 4  |     | 2,195 | 75.9% |
| cost | = | 9  |     | 1,925 | 63.7% |
| cost | = | 18 |     | 2,204 | 51.1% |
| cost | = | 32 | 形物言 | 3,404 | 32.7% |

# **Preliminary Results**

### (all four choice experiments)

| Logistic regression               | Number of obs | 1   | 9,728  |
|-----------------------------------|---------------|-----|--------|
|                                   | Wald chi2(7)  | -   | 968.38 |
|                                   | Prob > chi2   | = 1 | 0.0000 |
| Log pseudolikelihood = -6112.2264 | Pseudo R2     | =   | 0.0915 |

(Std. Err. adjusted for **2,432** clusters in resp\_id)

|       | Ē      |          | Robust    |        |       |            |           |
|-------|--------|----------|-----------|--------|-------|------------|-----------|
| се    | <br>+- | Coef.    | Std. Err. | Z      | P> z  | [95% Conf. | Interval] |
| cost  | G      | 0552955  | .0022175  | -24.94 | 0.000 | 0596416    | 0509494   |
| ec_g  | 1      | .0116286 | .0022306  | 5.21   | 0.000 | .0072567   | .0160004  |
| ec_p  | I.     | 0088399  | .0024033  | -3.68  | 0.000 | 0135503    | 0041296   |
| hr_g  | I.     | .0098166 | .0019601  | 5.01   | 0.000 | .0059748   | .0136583  |
| hr_p  | 1      | 0096461  | .0055928  | -1.72  | 0.085 | 0206077    | .0013156  |
| md_g  | 1      | .0042814 | .0014043  | 3.05   | 0.002 | .001529    | .0070337  |
| md_p  | I.     | 0071582  | .0031085  | -2.30  | 0.021 | 0132507    | 0010657   |
| _cons | I      | 2963909  | .2507588  | -1.18  | 0.237 | 7878692    | .1950874  |

# **Preliminary Results**

### (only first choice experiment)

| Logistic regression               | Number of obs | 스블  | 2,432  |
|-----------------------------------|---------------|-----|--------|
|                                   | Wald chi2(7)  | 7=1 | 142.15 |
|                                   | Prob > chi2   | =1  | 0.0000 |
| Log pseudolikelihood = -1583.1049 | Pseudo R2     | =   | 0.0442 |

(Std. Err. adjusted for **2,432** clusters in resp\_id)

| ce    |    | Coef.    | Robust<br>Std. Err. | Z     | P> z  | [95% Conf. | Interval] |
|-------|----|----------|---------------------|-------|-------|------------|-----------|
| cost  |    | 0373701  | .0040761            | -9.17 | 0.000 | 045359     | 0293811   |
| ec_g  | ЪŇ | .0078349 | .0046341            | 1.69  | 0.091 | 0012478    | .0169176  |
| ec_p  | 1  | 0050165  | .0047678            | -1.05 | 0.293 | 0143611    | .0043281  |
| hr g  | 1  | .0067236 | .0041287            | 1.63  | 0.103 | 0013686    | .0148157  |
| hr p  | 1  | 0131671  | .01157              | -1.14 | 0.255 | 0358438    | .0095096  |
| md g  | 1  | 0004643  | .0032994            | -0.14 | 0.888 | 006931     | .0060025  |
| md_p  | 1  | 0064608  | .0056955            | -1.13 | 0.257 | 0176239    | .0047022  |
| _cons | Ι  | .2836457 | .4852326            | 0.58  | 0.559 | 6673927    | 1.234684  |
|       |    |          |                     |       |       |            |           |

# **WTP Estimates**

### (all four choice experiments)

|                                                            | WTP to move 1<br>stream mile from |
|------------------------------------------------------------|-----------------------------------|
| From baseline model                                        | to                                |
| Ecosystem Conditions                                       |                                   |
| Med to Good                                                | \$2.52                            |
| Poor to Med                                                | \$1.92                            |
| Health Risk                                                |                                   |
| Med to Low                                                 | \$2.13                            |
| High to Med                                                | \$2.09                            |
| Murky Water Days                                           |                                   |
| Med to Low                                                 | \$0.93                            |
| High to Med                                                | \$1.55                            |
| Per Household WTP to move lowest quality stream to highest | ··· ·-                            |
| quality stream                                             | \$11.15                           |
| # of Households in Wake County                             | 400,172                           |
| Total Annual WTP                                           | \$4,461.229                       |

# **Debrief Results**

- Generally encouraging
  - Respondents thought survey was balanced (75%), provided enough info (83%), was price and policy consequential (88% and 61%)
  - People did express some doubts about county gov't being able to achieve quality changes (41%)
- Health Risk & Ecosystem Conditions = most important



88% Agree or Strongly Agree

## **Trap Question**

|                                                                                                                                  | 91% selected<br>disagree |       |                                     |          |                      |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|-------------------------------------|----------|----------------------|--|
| I am opposed to higher taxes, no matter what they are used for.                                                                  | 0                        | 0     | 0                                   | 0        | 0                    |  |
| Please select "disagree" here.<br>Thank you for reading carefully.                                                               | 0                        | 0     | 0                                   | 0        | 0                    |  |
| I have doubts that the county<br>government will be able to<br>improve stream water quality as<br>described in the action plans. | 0                        | 0     | 0                                   | 0        | 0                    |  |
|                                                                                                                                  | Strongly<br>Agree        | Agree | Neither<br>Agree<br>Nor<br>Disagree | Disagree | Strongly<br>Disagree |  |

# **COVID effects?**



Thinking back on your votes for or against the various action plans to improve stream water quality, would you say that the current coronavirus pandemic and its effects made you:

O More likely to vote for the action plans. 18% 6% O Less likely to vote for the action plans.

O Had <u>no effect</u> on how you voted.

73%

# **Additional Models**

- Analyze initial CE only
- Different ordering of attribute presentation
- County-specific results
- Including demographics
- Additional distance decay models
- Only respondents who perceive CEs as consequential (price and policy)
- Random coefficient and latent class models

# **Final Steps**

Expert elicitation for human health risk

### **Complete data collection**

• \$20 completion incentives offered

**Case study for Upper Neuse Watershed** 



NC STATE UNIVERSITY

# Thank you!

### **Questions or comments? Send to**

### roger\_von\_haefen@ncsu.edu