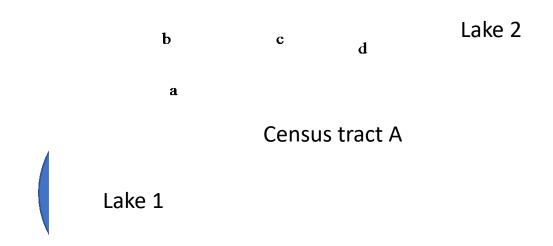


Do Water Quality and Lake Amenities Affect Residential Choices?

Jiarui Zhang
University of Wisconsin-Madison

Research Questions

- Estimate benefits of water quality improvement from different mechanisms.
 - > Amenity benefits: lakefront homeowners.
 - Recreational benefits: visitors.
- Estimate household preferences for water quality and amenities at different spatial scales
 - Local area: within certain distance of the nearest lakes.
 - ➤ Large region: a large area including multiple lakes.
- Use residential sorting model to estimate household preferences.
 - Explore this problem in the context of Wisconsin.



Data

- ZTRAX -- Property Transaction Data
 - Nationwide records of housing transactions from 1990 to 2016.
- Home Mortgage Disclosure Act data
 - Records loan-level information like income levels and races
 - Merged with transaction data with matching algorithm.
- Water quality data Department of Natural Resource
 - Records the Secchi depth values in WI lakes from 2006 to 2019.
- Land use data Department of Naturel Resource
 - Merge with water quality data to estimate the missing water quality data using machine learning algorithm.

Choice Sets

 The choice sets are exclusively defined by census tract, lakes, and lakefront dummies.

Ex:

- Region a: lakefront area of lake1 in census tract A.
- Region c: non-lakefront area of lake 2 in census tract A.

Sorting – Models

$$V_{lbcj}^i = \beta_i q_l \cdot D_b + \theta_i r_c + \cdots$$

$$r_c = \sum_{l}^{L} q_l \cdot \frac{s_l}{d_l}$$

- V_{lbcj}^{i} -- the utility of individual i purchasing a house in the census tract c of county j.
- q_l -- water quality of lake l.
- D_b -- the indicator of lakefront properties within 1km of their nearest lakes.
- r_c -- the recreation index in the recreation area of census tract c.

Sorting – Preliminary Results

Table 1: First Stage Estimation Results				
Variables (Neighborhood-X-Houshold)	Estimate	Std Err	T-Stat	
Secchi By Lakefront-X-Income	0.0054	0.0009	6.1190	
Secchi By Lakefront-X-White	0.0249	0.0052	4.7932	
Index-X-Income	-0.6705	0.0322	-20.8119	
Index-X-White	2.3626	0.3755	6.2913	

Table 2: Second Stage Estimation Results				
Variables	Estimate	Std Err	T-Stat	
Price Index	-0.0362	0.0176	-2.0529	
Secchi Depth	-0.1028	0.0087	-12.5595	
Index	-0.4847	1.7617	-1.7454	

Income – measured in \$10,000 Price index – measured in \$100,000.

Thank you!!!