2021 Social Cost of Water Pollution Workshop Integrated Assessment Models and the Social Costs of Water Pollution April 21-23, 2021, Cornell Atkinson Center for Sustainability

Hydroeconomic modeling for assessing water scarcity and pollution abatement measures in the Ebro River Basin, Spain

What we do: Social Costs and Benefits of Pollution Abatement Policies at Basin Level

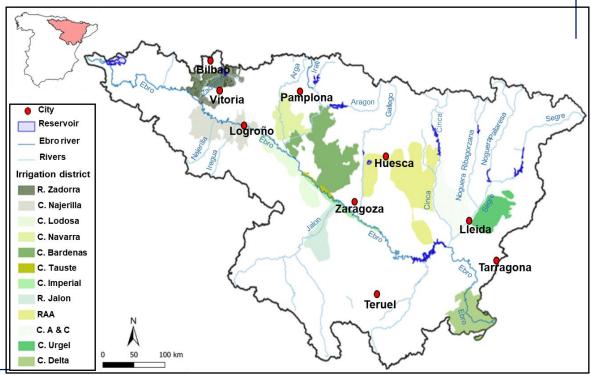
Safa Baccour^a, Jose Albiac^{b*}, Taher Kahil^b, Encarna Esteban^c, Daniel Crespo^a, and Ariel Dinar^d

^a Unidad de Economía Agroalimentaria y de los Recursos Naturales, Saragossa (Baccour.safa@gmail.com, dcrespoe@cita-aragon.es).

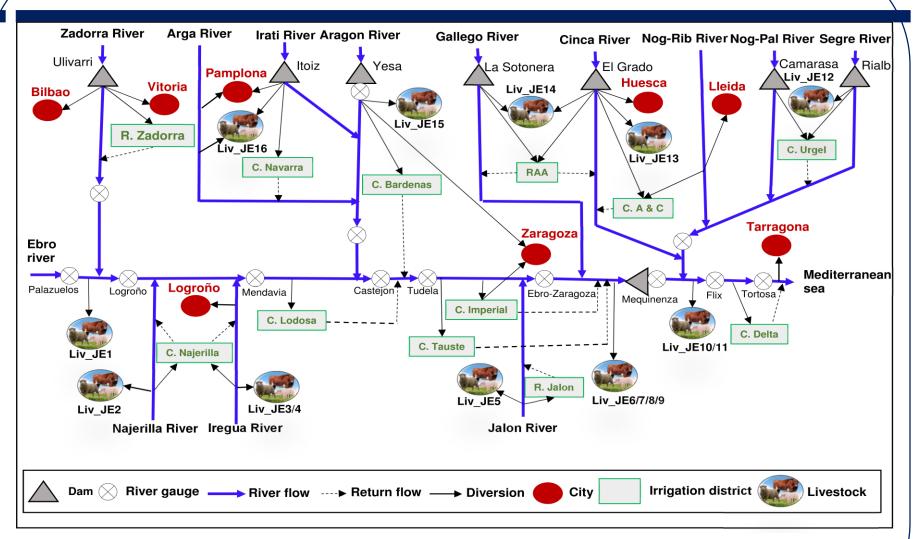
^b Instituto internacional de análisis de sistemas aplicadas, Austria (kahil@iiasa.ac.at, maella@unizar.es). ^c School of Social Sciences and Humanities, Universidad de Zaragoza, Teruel, Spain (encarnae@unizar.es) ^d School of Public Policy, University of California, Riverside, USA (adinar@ucr.edu)

Departamento de Análisis Económico Universidad Zaragoza

International Institute for Applied Systems Analysis


Introduction

Climate change and agricultural nonpoint pollution are global problems that impact all regions and river basins in the world. There are severe water scarcity and quality degradation problems in Spanish basins which are under strong anthropic pressures.


This study analyzes the Ebro River Basin in northeastern Spain, which is under mounting scarcity pressures and water quality problems that require policy intervention for more sustainable management of water resources.

A hydro-economic model is developed to perform a detailed concurrent assessment of water allocation and pollution abatement solutions at river basin level.

The model water assesses agricultural allocation and nonpoint pollution into atmosphere watercourses and under different drought events and provides a series of mitigation and adaptation policies under normal climate and severe drought conditions in order to identify the effectiveness and robustness of policies.

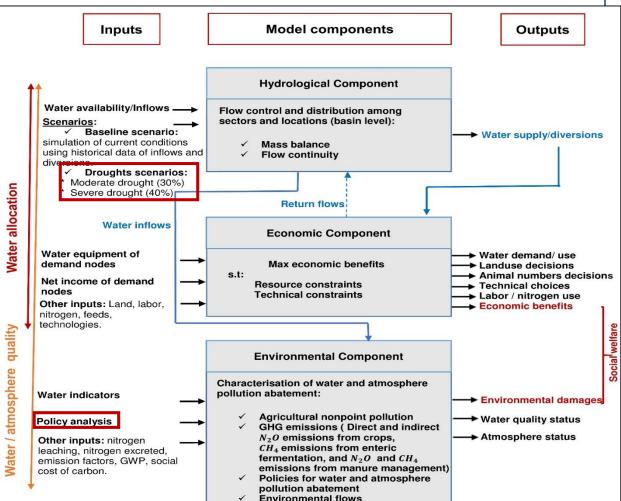
Network of the Ebro Basin

The model includes the main water uses in the basin: irrigation, livestock, and urban uses.

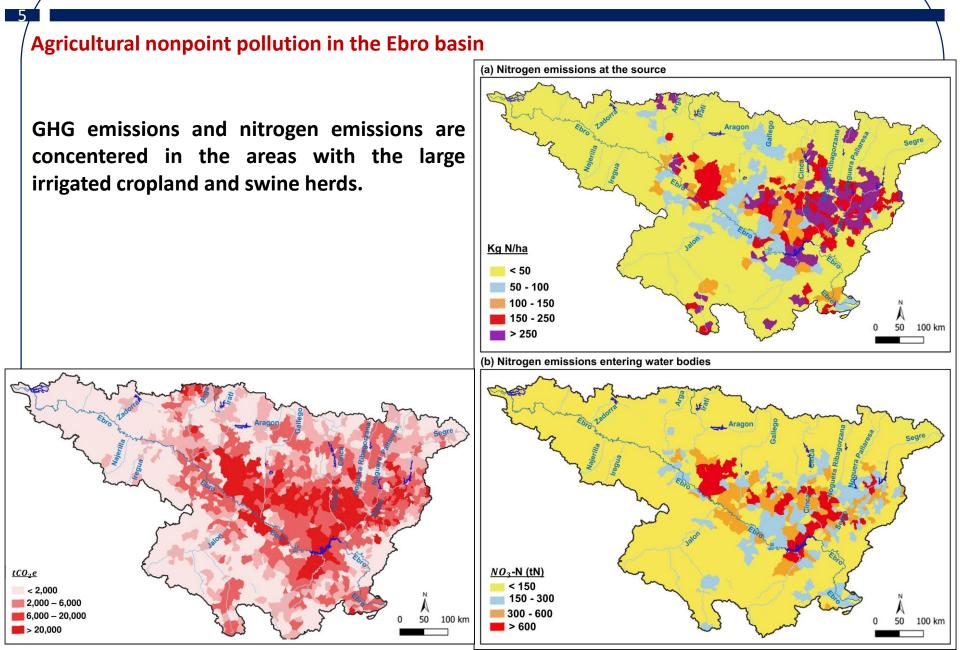
Dryland crops are also included in the assessment of nonpoint pollution emissions.

Modeling Framework

The hydroeconomic model developed integrates hydrological, economic and environmental components. The interaction among components provides a better assessment of water allocation options among sectors and spatial locations, showing the specific impacts of droughts on the system.


Drought scenarios are used to understand future drought severity levels (moderate and severe) and the ensuing impacts of water scarcity and pollution on social benefits in the basin.

The selected policies are P1: Optimization of nitrogen fertilization; P2: Substitution of synthetic fortilization by organic


fertilization by organic fertilization;

P3: Irrigation modernization;

P4: Manure treatment plants

Results

Results

Results of drought scenarios

Climate conditions	Normal flow	Moderate drought	Severe drough	
Land (1,000 ha)				
Irrigated land Dryland	557 1,194	362 1,194	315 1,194	
Livestock (LSU)	2,769	2,769	2,769	
Water use (Mm ³)	3,874	2,825	2,475	
Streamflow at the river mouth (Mm ³)	9,272	6,366	5,406	
Nitrogen emissions (1000 tNO ₃ -N	۱)			
At the source Entering water bodies	236 94	227 91	225 90	
Nitrate concentration (mg/l NO ₃ -))			
Ebro River mouth	11.3	15.8	18.4	
GHG emissions (MtCO ₂ e)	7.15	6.97	6,93	
Private benefits (M€)	3,784	3,650	3,586	
Environmental damages (M€)	409	397	394	
Social benefits (M€)	3,375	3,253	3,192	

The results show in general that drought conditions reduce crops with low profitability and high water requirements, and the cropland acreage under less efficient irrigation technologies.

Results highlight the tradeoff between nitrate concentrations and water availability. Nitrate concentrations increase under drought conditions, as the dilution processes worsen driven by water scarcity.

Results

Results of mitigation and adaptation policies under normal flow and drought conditions

Policies		Normal flow				Severe drought				
	Without	P1	P2	P3	P4	Without	P1	P2	P3	P4
	policies					policies				
Land (1,000 ha)										
Irrigated land	557	584	584	566	557	315	330	347	328	315
Dryland	1,194	1,194	1,194	1,194	1,194	1194	1,194	1,194	1,194	1,194
Livestock (LSU)										
Animals	2,769	2,769	2,769	2,769	2,769	2,769	2,769	2,769	2,769	2,769
Water use (Mm ³)	3,874	4,031	4,031	3,549	3,874	2,475	2,566	2,564	2,280	2,475
Agriculture	3,552	3,709	3,709	3,227	3,552	2,176	2,244	2242	1,958	2,176
Urban	322	322	322	322	322	322	322	322	322	322
Streamflow at the river	9,272	9,160	9,160	9,290	9,272	5,406	5,341	5,342	5,416	5,406
mouth	·					·				
Nitrogen emissions (1000 th	NO ₃ -N)									
At the source	236	229	160	234	115	225	220	189	224	105
Entering water	94	91	66	93	46	89	87	73	89	42
bodies										
NO ₃ - concentration (mg/l NO	Ŋ ₁ ⁻)									
Ebro River mouth	11.3	11.0	7.7	11.1	5.5	18.4	18.2	15.7	18.3	8.6
GHG emissions (MtCO ₂ e)										
· 27	7.15	6.96	6.85	7.11	6.65	6.93	6.79	6.81	6.92	6.43
Private benefits (M€)										
Agriculture	1,925	1,970	1,937	1,937	1,642	1,727	1,764	1,772	1,761	1,444
Urban	1,859	1,859	1,859	1,859	1,859	1,859	1,859	1,859	1,859	1,859
Total	3.784	3,829	3,796	3,796	3.501	3,586	3,623	3,623	3,620	3,303
Env. damag. (M€)	409	397	300	406	326	394	386	312	393	312
Social benefits (M€)	3,375	3,432	3,531	3,390	3,175	3,192	3,237	3,311	3,277	2,292

The results reveal the tradeoffs and synergies between the economic and environmental effects of these abatement policies.

Droughts could limit the effectiveness of abatement policies in curbing nonpoint emissions and improving water and air quality compared with normal weather. However, these policies still have significant economic and environmental positive effects compared to drought conditions without policies.

Conclusions

This study shed light on a number of <u>important topics</u>, including nitrogen water contamination and GHG emissions, the synergies and tradeoffs between environmental and economic objectives under various policies, and the potential tradeoffs among water quantity and water quality.

The capabilities of integrated hydroeconomic modeling to address challenging research questions involved in the sustainable management of water resources: Social Costs and Benefits of Pollution Abatement at Basin Level

The analysis of abatement policies could support decision makers and contribute to the ongoing policy discussion for designing basin wide sustainable water management policies.